- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dasgupta, Aparajita (2)
-
Jaqaman, Khuloud (2)
-
Ngo, Huong-Tra (2)
-
Guerrero, Jaime (1)
-
Jana, Soma (1)
-
Touret, Nicolas (1)
-
Tschoerner, Deryl (1)
-
Vega-Lugo, Jesus (1)
-
da_Rocha-Azevedo, Bruno (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
Garcia-Parajo, Maria F (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The actin cortex plays a large role in regulating the dynamic organization of cell surface receptors, which in turn regulates their signaling. However, many receptors have short intracellular domains and no known link to cortical actin. In this work, we identified the β1-integrin subunit and several tetraspanins – CD9, CD81 and CD151 – as part of the hitherto unknown molecular link between the surface receptor CD36 and cortical actin. We found that CD36 in vascular endothelial cells is recruited into complexes/nanodomains containing these proteins, with stronger recruitment near the cell edge. Perturbing this recruitment via the mutation G12V in the N-terminal transmembrane domain of CD36 alters the dynamic organization of CD36 on the vascular endothelial cell surface and weakens its coupling to cortical actin dynamics. Moreover, perturbing this recruitment abolishes thrombospondin-1-induced CD36 signaling through the Src family kinase Fyn. Given their many interactions with other transmembrane proteins, tetraspanins and integrins may provide a ubiquitous mechanism for plasma membrane-cortical actin coupling.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Dasgupta, Aparajita; Ngo, Huong-Tra; Tschoerner, Deryl; Touret, Nicolas; da_Rocha-Azevedo, Bruno; Jaqaman, Khuloud (, Biophysical Journal)Garcia-Parajo, Maria F (Ed.)The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. However, this has been shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins’ actin binding ability, diffusion type, and local CA density. Combining SMI-FSM with subcellular region analysis revealed differences in CA dynamics that were predictive of differences in PM protein mobility near ruffly cell edges versus closer to the cell center. SMI-FSM also highlighted the complexity of cellwide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and that the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes.more » « less
An official website of the United States government
